Course Number and Name

BEC301 - SIGNALS AND SYSTEMS

Credits and Contact Hours

4 & 60

Course Coordinator's Name

Ms S.Beulah Hemalatha

Text Books and References

TEXT BOOK:

1. 1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, "Signals and Systems", Pearson, 2007. **REFERENCES:**

- 1. B. P. Lathi, "Principles of Linear Systems and Signals", Second Edition, Oxford, 2009.
- 2. R.E.Zeimer, W.H.Tranter and R.D.Fannin, "Signals & Systems Continuous and Discrete", Pearson, 2007.
- 3. John Alan Stuller, "An Introduction to Signals and Systems", Thomson, 20076.
- 4. www.nptel.ac.in

Course Description

This course trains students for an intermediate level of fluency with signals and systems in both continuous time and discrete time, in preparation for more advanced subjects in digital signal processing (including audio, image and video processing),communication theory, and system theory, control and robotics

Prerequisites	Co-requisites				
Mathematics-II	Mathematics-III				
required, elective, or selected elective (as per Table 5-1)					
required					

required

Course Outcomes (COs)

CO1-To Understand different types of signals-continuous and discrete,odd and even,periodicand aperiodic etc.Be able to classify systems based on their properties

- CO2- To familiarize the concepts of transform based continuous time and discrete time analysis of signals and systems
- CO3- Analyze continuous time signals and systems by using appropriate mathematical tools
- CO4-. Analyze sampling process and sampling of discrete time signals.
- CO5- Analyze discrete time signals and systems by using appropriate mathematical tools
- CO6- Determine Fourier transforms for continuous-time and discrete-time signals (or impulse-response functions), and understand how to interpret and plot Fourier transform magnitude and phase functions.

Student Outcomes (SOs) from Criterion 3 covered by this Course													
	COs/SOs	а	b	С	d	е	f	g	h	i	j	k	
	CO1	Н	Μ		Μ	Н							
	CO2	Н			Μ	Н					L		
	CO3	Μ			Н	Н							
	CO4					Н		Μ				Μ	
	CO5	Н	Μ		Μ								
	CO6	Н	Μ		М		Μ				М		

Impulse, Exponential, Classification of CT and DT signals - periodic a singals, CT systems and DT systems, Classification of systems - Linear Times	nd aperiodic, random le invariant Systems.
UNIT II ANALYSIS OF C.T. SINGALS	12
Fourier series analysis, Spectrum of C.T. singals, Fourier Transform and	Laplace Transform in
Signal Analysis.	
UNIT III LTI-CT SYSTEMS	12
Differential equation, Block diagram representation, Impulse response	, Convolution integral,
Frequency response, Fourier Methods and Laplace transforms in analysis	is, State equations and
Matrix.	

UNIT IV ANALYSIS OF D.T. SIGNALS

Spectrum of D.T. signals, Discrete Time Fourier Transform (DTFT), Discrete Fourier Transform (DFT), Properties of Z-transform in signal analysis.

UNIT V LTI-DT SYSTEMS

List of Topics Covered

UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS

Difference equations, Block diagram representation, Impulse response, Convolution SUM, Frequency response, FFT and Z-transform analysis, State variable equation and Matrix.

Continuous time signals (CT signals), discrete time signals (DT signals) - Step, Ramp, Pulse,

12

12

12